On the Krohn-Rhodes Cascaded Decomposition Theorem

نویسنده

  • Oded Maler
چکیده

The Krohn-Rhodes theorem states that any deterministic automaton is a homomorphic image of a cascade of very simple automata which realize either resets or permutations. Moreover, if the automaton is counter-free, only reset automata are needed. In this paper we give a very constructive proof of a variant of this theorem due to Eilenberg.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Bounds on the Complexity of Cascaded Decomposition of Automata

In this paper we give exponential upper and lower bounds on the size of the cascaded (Krohn-Rhodes) decomposition of automata. These results are used for giving elementary algorithms for various translations between automata and temporal logic, where the previously-known translations were nonelementary.

متن کامل

The Krohn-Rhodes Theorem and Local Divisors

We give a new proof of the Krohn-Rhodes theorem using local divisors. The proof provides nearly as good a decomposition in terms of size as the holonomy decomposition of Eilenberg, avoids induction on the size of the state set, and works exclusively with monoids with the base case of the induction being that of a group.

متن کامل

An Effective Lower Bound for Group Complexity of Finite Semigroups and Automata

The question of computing the group complexity of finite semigroups and automata was first posed in K. Krohn and J. Rhodes, Complexity of finite semigroups, Annals of Mathematics (2) 88 (1968), 128–160, motivated by the Prime Decomposition Theorem of K. Krohn and J. Rhodes, Algebraic theory of machines, I: Prime decomposition theorem for finite semigroups and machines, Transactions of the Ameri...

متن کامل

On the Cascaded Decomposition of Automata its Complexity and its Application to Logic Draft

The primary decomposition theorem due to Krohn and Rhodes KR which has been considered as one of the fundamental results in the theory of automata and semigroups states that every automaton is homomorphic to a cascaded de composition wreath product of simpler automata of two kinds reset automata and permutation automata If the automaton is non counting and correspond ingly its transformation se...

متن کامل

Merge decompositions, two-sided Krohn-Rhodes, and aperiodic pointlikes

This paper provides short proofs of two fundamental theorems of finite semigroup theory whose previous proofs were significantly longer, namely the two-sided Krohn-Rhodes decomposition theorem and Henckell's aperiodic pointlike theorem, using a new algebraic technique that we call the merge decomposition. A prototypical application of this technique decomposes a semigroup $T$ into a two-sided s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010